Using transcription of six Puccinia triticina races to identify the effective secretome during infection of wheat
نویسندگان
چکیده
Wheat leaf rust, caused by the basidiomycete Puccinia triticina, can cause yield losses of up to 20% in wheat producing regions. During infection, the fungus forms haustoria that secrete proteins into the plant cell and effect changes in plant transcription, metabolism, and defense. It is hypothesized that new races emerge as a result of overcoming plant resistance via changes in the secreted effector proteins. To understand gene expression during infection and find genetic differences associated with races, RNA from wheat leaves infected with six different rust races, at 6 days post inoculation, was sequenced using Illumina. As P. triticina is an obligate biotroph, RNA from both the host and fungi were present and separated by alignment to the P. triticina genome and a wheat EST reference. A total of 222,571 rust contigs were assembled from 165 million reads. An examination of the resulting contigs revealed 532 predicted secreted proteins among the transcripts. Of these, 456 were found in all races. Fifteen genes were found with amino acid changes, corresponding to putative avirulence effectors potentially recognized by 11 different leaf rust resistance (Lr) genes. Twelve of the potential avirulence effectors have no homology to known genes. One gene had significant similarity to cerato-platanin, a known fungal elicitor, and another showed similarity to fungal tyrosinase, an enzyme involved in melanin synthesis. Temporal expression profiles were developed for these genes by qRT-PCR and show that the genes expression patterns were consistent between races from infection initiation to just prior to spore eruption.
منابع مشابه
Draft Genome of the Wheat Rust Pathogen (Puccinia triticina) Unravels Genome-Wide Structural Variations during Evolution
Leaf rust is one of the most important diseases of wheat and is caused by Puccinia triticina, a highly variable rust pathogen prevalent worldwide. Decoding the genome of this pathogen will help in unraveling the molecular basis of its evolution and in the identification of genes responsible for its various biological functions. We generated high quality draft genome sequences (approximately 100...
متن کاملLeaf Rust of Wheat: Pathogen Biology, Variation and Host Resistance
Rusts are important pathogens of angiosperms and gymnosperms including cereal crops and forest trees. With respect to cereals, rust fungi are among the most important pathogens. Cereal rusts are heteroecious and macrocyclic requiring two taxonomically unrelated hosts to complete a five spore stage life cycle. Cereal rust fungi are highly variable for virulence and molecular polymorphism. Leaf r...
متن کاملComparative microscopic and molecular analysis of Thatcher nearâ•’isogenic lines with wheat leaf rust resistance genes Lr2a, Lr3, LrB or Lr9 upon challenge with different Puccinia triticina races
Thatcher near-isogenic lines (NILs) of wheat carrying resistance gene Lr2a, Lr3, LrB or Lr9 were inoculated with Puccinia triticina races of virulence phenotype BBBD, MBDS, SBDG and FBDJ. Puccinia triticina infection structures were analysed under the fluorescence microscope over a course of 14 days after inoculation (dai). The relative proportion of P. triticina and wheat genomic DNA in infect...
متن کاملCytological and molecular analysis of the Hordeum vulgare-Puccinia triticina nonhost interaction.
Cultivated barley, Hordeum vulgare L., is considered to be a nonhost or intermediate host species for the wheat leaf rust fungus Puccinia triticina. Here, we have investigated, at the microscopic and molecular levels, the reaction of barley cultivars to wheat leaf rust infection. In the nonhost resistant cultivar Cebada Capa, abortion of fungal growth occurred at both pre- and posthaustorial st...
متن کاملGenome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces
Leaf rust, caused by Puccinia triticina (Pt), and stripe rust, caused by P. striiformis f. sp. tritici (Pst), are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association ...
متن کامل